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Static VWAP: A Comparative Analysis
Pragma Trading

Abstract—One of the most popular trading strategies
is the Volume-Weighted Average Price (VWAP) trading
algorithm. About 50% of institutional flow is executed via
some VWAP variant. A VWAP algorithm tries to achieve
an average execution price which is as close as possible to
the realized VWAP in the market. Static VWAP trading
algorithms use a pre-defined trading schedule that tries to
approximate the volume pattern realized over the trading
day. This schedule is calculated by averaging historical
trading patterns. In this paper we explore the effects of
various averaging methods on the expected performance of
the VWAP algorithm. We conclude that updating curves
can decrease the dispersion of shortfalls by about 10%.
Using special curves for Fed announcement days produces
a similar benefit. Using special curves for different sectors
or market caps or for option expiration days has no effect.

I. PRELIMINARIES

A. Introduction

Over the last several years, the financial landscape has
changed dramatically, moving from high-touch human
traders to black-box systems where people are not in-
volved in the actual trading process. Whether humans or
machines are doing the actual trading, their performance
is measured relative to some benchmark. Over the years
many benchmarks have been proposed, but probably the
most popular one is the volume-weighted average price,
or VWAP. The VWAP represents the average price per
share that was paid in the market during the life of the
trade. As such it represents an ideal price that a trader
would like to capture for the principal. This simple and
intuitive benchmark is very appealing to many market
participants. As a result, trading algorithms that try to
achieve the VWAP are now responsible for about 50%
of institutional trading flow [1].

There are many trading algorithms that try to achieve
an average trade price close to the market-wide VWAP
for the day. These algorithms are divided into two
main groups: static and dynamic. Static algorithms use
a pre-defined trading policy which does not change in
response to market conditions. Dynamic algorithms use
various real-time indicators in order to decide at what
rate to trade. In essence, a dynamic strategy makes
small deviations from the commands supplied by a static
algorithm, based on current market conditions.

The most common static VWAP strategy is to follow
the historical intra-day seasonality. While intuitively
simple, the task of estimating intra-day patterns is tricky.
There are two approaches: estimate the intra-day season-
ality on a stock by stock basis [2], or average over many
stocks [4]. The first approach requires averaging over a
long history in order to achieve a stable estimate for each
stock. This long period results in a mis-specification, i.e.,
errors, in the estimated curves due to changing market
conditions. The second approach requires a much shorter
history, which results in a much faster adaptation to
changing market conditions. However, this faster adap-
tation does not come for free as it introduces an error
due to inter-stock variability.

The published literature on intra-day seasonality is
sparse. Moreover, even the papers that do explore this
issue more often than not treat it as a nuisance that needs
to be addressed in order to solve a different problem.
Apart from the two articles cited above, it is worth
mentioning [3], which investigated a very close question
to the one we consider here, and reached conclusions
similar to ours.

B. VWAP, Price Moves, and Performance Criteria

A key issue in the analysis of VWAP strategies is how
to measure their performance. In practice, VWAP traders
try to minimize the difference, or shortfall, between the
average price of their trade and the market-wide VWAP.
Considering that traders can take either side of a trade,
the averageshortfall over a large number of trades is
approximately zero for any curve. So, what characterizes
a good VWAP strategy? The answer is that good VWAP
strategies have a low shortfalldispersion—ideally, the
shortfall is always near zero. In this document, we
compare the performance of various VWAP curves using
standard deviation of VWAP shortfall as a measure of
dispersion. In Section II we also mention briefly a second
dispersion metric, the 95% quantile. A mathematical
discussion is presented in the appendix.

In what follows we ignore two effects that have an
impact on VWAP shortfall. One is the effect of commis-
sions and fees, which are costs that depend on the size of
the order but not on the strategy. Therefore we can safely
ignore them for the purpose of comparing strategies.
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Secondly, we assume that we are able to capture the
market’s VWAP over short time intervals, e.g. over a
minute. In practice, our average execution price over one
minute may not be exactly equal to the market’s average
price, because of small-scale timing issues or because
we need to pay for liquidity. In this study we focus on
determining the best shape for the trading curve over the
entire day, and not on micro issues.

C. Scope and Main Conclusions

In this document we examine the performance of
static VWAP algorithms. Recall that in a static VWAP
algorithm we trade based on a pre-defined schedule,
one that tries to match the intra-day seasonality as
much as possible. As was mentioned, there are various
ways of constructing this schedule, e.g., averaging cross-
sectionally, averaging temporally, etc. In this document
we examine various ways for constructing the trading
schedule curve and the effect these schedules have on
the performance.

We assess the performance of each algorithm by
looking at both the shortfall standard deviation and the
worst 5% shortfall in our sample. The latter measure is
referred to as the 95% percentile. We compute shortfalls
by simulating trading according to various curves, using
historical price and volume data for 2008-09.

In our investigation we have found that the effect
of using relatively old curves on the performance is
negligible. This should not come as a surprise. The
average curve is slowly changing from period to period
and these changes are very small relative to the daily
variability in the realized curves. Hence, it is the daily
random changes in the curve that are responsible for
most of the shortfalls, and not the mis-specification due
to using an old curve.

One could also argue that different groups of stocks
behave differently. We examine this issue and we demon-
strate that the use of curves tailored to narrower groups
does not improve the results in a meaningful way. For
example, assume the universe of interest is composed of
the largest 100 stocks. We can use a curve constructed
specifically for that group. However, using a curve
constructed from the largest 1000 stocks instead does
not have any meaningful influence on the performance.
Another possible grouping is economic sectors, i.e., use
different curves for different sectors. This study shows
that, for some time following the Lehman Brothers
collapse, using sector-specific curves was indeed a good
strategy. However, this improvement is not persistent.
Considering the risks in using sector-specific curves
(e.g., sensitivity to outliers), one may be better off by
trading according to one universal curve.

Finally, we consider using special curves for days that
are known in advance to be special. First, we examine
the optimal strategy during days in which there are
scheduled Federal Reserve announcements. During these
days we do observe improved performance for a specific
curve. Second, we examine days in which equity options
expire. Here we find that using special curves yields a
negligible performance improvement.

II. SINGLE-NAME TASKS

In general, one can use a single intra-day pattern for all
stocks and dates, or use tailor-made curves for specific
classes of stocks and/or dates. Tailor-made curves may
yield benefits but they introduce software complexity and
they are necessarily “noisier”, as less historical data is
available.

In this section, we investigate the performance of
tailor-made curves for various classes of stocks and
dates. Specifically we consider combinations of:

• Using a single static curve for all stocks.
• Using a single moving-average curve that changes

every day.
• Classifying stocks by market cap and using a dif-

ferent curve for each class.
• Classifying stocks by sector and using a different

curve for each sector.
• Using special curves for scheduled Fed announce-

ment dates.

In what follows we define an estimation universe and
a simulation universe. The estimation universe is the uni-
verse of stocks we use for estimating the average curve.
The simulation universe is the universe of stocks we
use for testing the performance of the estimated curve.
For example, we consider the case when our estimation
universe is based on the 3000 stocks with the largest
market cap, while we examine the performance over a
simulation universe constituted by the 100 stocks with
the largest market cap. In addition, we assume that all our
tasks are full-day VWAP tasks, and that one can capture
the VWAP price within each bar. Small deviations in the
executed price relative to the average market price over
time scales of minutes introduce negligible increases in
the shortfall standard deviation, which we ignore.

In our study we examine the performance over the
period between February 1, 2008 and March 19, 2009.
We examine the performance on a two-month rolling
basis. This will allow us to examine both the absolute
performance of the various algorithms and the temporal
behavior of the performance.
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Fig. 1. Standard deviation of VWAP shortfall over a universeof
500 stocks. The standard deviation is computed over moving one-
month windows. The curves labeled with a month were constructed
with data from that month; the remaining curve is updated every day
using the trailing one month of data.

A. Curve Drift

In this section we examine the possibility that the
curve drifts over time, and the effects of temporal mis-
match in the curve on the performance of the algorithm.
We conduct two kind of experiments:

• Fit a curve using one month’s worth of trading data,
then freeze the curve and use it for all trading days.

• Fit a curve with a moving window with the last
month of trading data.

Figure 1 shows the results of this experiment. The
figure depicts the standard deviation as a function of
time, when the algorithm uses the various curves. The
standard deviation is computed over a moving two-
month window. The estimation and simulation universes
were the 500 stocks with the largest market cap. A
snapshot with the results as of March 2009 is shown
in Table I.

We note that under normal market conditions (before
September 2008), there is little difference between any
two curves. Second, more-recent curves are not necessar-
ily preferable: a curve fit with January 2009 data actually
does better than all the others, even in 2008. A curve
fit with July 2008 data is the worst one through the
summer of 2008. Third, the curve updated on a rolling
basis performs close to average over stable periods and is
nearly the best during volatile periods, with a difference
of up to 7 basis points (15%) relative to the worst
performer, and about 4 basis points (10%) relative to the
average curve. This suggests that frequent curve updates
may be able to improve performance over fixed curves.

TABLE I
STANDARD DEVIATION OF SHORTFALL FOR CURVES FIT ON

DIFFERENT DATES, AVERAGED OVER TWO MONTHS PRIOR TO

MARCH 19, 2009. EACH ROW REFERS TO A CURVE FIT ON A

PARTICULAR DATE. THE STANDARD ERROR IS1 BP.

Standard deviation (bp) 95th percentile (bp)
January 2008 34 65
April 2008 35 67
July 2008 36 69
October 2008 31 58
January 2009 30 56
rolling 30 56
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Fig. 2. Standard deviation of VWAP shortfall when the rolling
pattern is updated using 1, 5, 11, 22, 44 trading days.

This conclusion is the same when other simulation or
estimation universes are considered.

B. Averaging Window

The use of a moving average for the purpose of
computing a VWAP curve begs the question of the
optimal averaging length. Generally, shorter averages
react more quickly to changes but produce noisier results.

Figure 2 shows the results of a simple experiment
in which different averaging lengths were used, ranging
from 1 day to 3 months. The results are not surprising.
Under stable market conditions, the 1-day curve per-
forms worst, as can be seen e.g. in the March-April 2008
period. In volatile periods, e.g. November-December
2008, the 3-month curve is worst. The differences can be
up to 10%. A 1-month curve performs uniformly well.

C. Market Cap Effects

In this subsection we explore the effects on perfor-
mance of dividing the stocks into different market cap
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TABLE II
STANDARD DEVIATION OF SHORTFALL (IN BP) FOR VARIOUS

CURVE/STOCK UNIVERSE COMBINATIONS, AVERAGED OVER TWO

MONTHS PRIOR TOMARCH 19, 2009. EACH ROW REFERS TO A

CURVE FROM A GIVEN ESTIMATION UNIVERSE. EACH COLUMN

REFERS TO A GIVEN SIMULATION UNIVERSE. THE STANDARD

ERROR IS1 BP.

Top 100 Top 500 Top 1000 Top 3000
Top 100 25 34 40 71
Top 500 23 30 35 68
Top 1000 23 29 34 67
Top 3000 23 30 35 67

groups. We divided the stock population into four (over-
lapping) classes by market cap: top 100, top 500, top
1000 and top 3000 stocks. We used each of these classes
as an estimation universe, and then applied the estimated
curves to all four classes as simulation universes. In
other words, we compute one curve per class but test
each curve against all classes. The curves were computed
using a 1-month moving-average as in the rolling curve
of the previous section.

We expect the four classes to behave differently: the
large stocks are very liquid and have more or less pre-
dictable patterns, whereas the smaller stocks are thinly
traded and are subject to wide day-to-day variations in
volume. Therefore, we expect that the standard deviation
of VWAP shortfall will be lowest for the top-100 class
and highest for the top-3000 class, regardless of which
curve is used.

On the other hand, we might expect that each curve
would do best when used for stocks in its corresponding
class. However, figures 3-6 show that this is not the
case. Each panel refers to shortfall values for stocks
in one of the four classes, and contains results for the
four curves under test. Clearly, the differences between
the curves are dwarfed by the time variations driven
by market volatility. A close-up also reveals that in
each class the top performer isnot the curve fit to that
class. In fact, the only curve with consistently worse
performance is the curve computed from the largest 100
stocks (the difference is less than 10%, however.) The
other three curves are practically indistinguishable. Note
that in order to compute an average curve, the patterns
of all stocks have been equally weighted, regardless of
market cap or daily volume.

D. Sectors

Another way to divide the universe of stocks in various
groups is by economic sector. Here we compute sector-
specific VWAP curves by using each of the ten GICS
sectors as a separate estimation and simulation universe.
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Fig. 3. Standard deviation of VWAP shortfall for the largest100
stocks by market cap. Four curves were tested, each obtainedby
averaging a different number of stocks. The average is takenover a
moving two-month window.
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Fig. 4. Standard deviation of VWAP shortfall for the largest500
stocks by market cap. Four curves were tested, each obtainedby
averaging a different number of stocks. The average is takenover a
moving two-month window.

TABLE III
95TH QUANTILE OF VWAP SHORTFALLS. FOR EACH

CURVE/STOCK UNIVERSE COMBINATION, THE QUANTILE IS THE

VALUE s OF SHORTFALL(IN BP) SUCH THAT 95% OF HISTORICAL

SHORTFALLS ARE SMALLER THANs

Top 100 Top 500 Top 1000 Top 3000
Top 100 50 64 81 118
Top 500 44 56 69 109
Top 1000 46 55 67 107
Top 3000 44 57 70 109
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Fig. 5. Standard deviation of VWAP shortfall for the largest1000
stocks by market cap. Four curves were tested, each obtainedby
averaging a different number of stocks. The average is takenover a
moving two-month window.
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Fig. 6. Standard deviation of VWAP shortfall for the largest3000
stocks by market cap. Four curves were tested, each obtainedby
averaging a different number of stocks. The average is takenover a
moving two-month window.

We then estimate the overall performance of a sector-
specific strategy by pooling the 10 standard deviations
obtained with the 10 sector-specific VWAP curves. We
compare the pooled standard deviation with the results
of using a single moving-average curve for the entire
population.

In all cases we use a moving average over the last
month, and we consider only stocks in the group of
the largest 1000 by market cap. We omit sector 8,
telecommunication services, because it contains only
about 20 names and its average pattern is very noisy.

The results are depicted in Fig. 7. For normal market
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Fig. 7. Standard deviation of shortfall using sector-specific curves
and a common rolling curve.

conditions, i.e. before September 2008, the performance
of the common curve is indistinguishable from the
sector-specific curves. After September 2008, when the
standard deviation increases to 30-50 basis points, the
sector-specific curves provide an improvement of 1-2
basis points.

Figure 8 shows a comparison for two sectors, Energy
and Financials. For each sector we show the rolling
standard deviation of shortfall obtained from using a
common curve and a sector-specific curve. First, it can
be seen that there is wide variation between sectors,
especially after September 2008. Second, the sector-
specific curves can improve or worsen performance. For
Financials, the sector-specific curve is never worse than
the common curve, and it provides an improvement of
up to 7 bps, or 8%. For Energy, the common curve is
in fact better, by up to 3 bps, or 7%. Thus, in the case
of Energy the positive effect of having a more-specific
curve is negated by the random errors introduced by
having fewer stocks to compute the average.

E. Scheduled Fed days

Days on which it is known that the Federal Reserve
will make an announcement are of particular interest,
since much volume is driven by the announcement, in
the afternoon. Thus one might consider using a special
curve for those days.

A major drawback of this idea is the relative scarcity
of data: the Fed meets regularly only 8 times a year. In
order to obtain more-stable estimates, we used data for
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Fig. 8. Standard deviation of shortfall using sector-specific curves
and a common rolling curve for two specific sectors.

Fed days between August 2004 and March 20091.
We simulated the effect of using a specially-designed

Fed-day VWAP curve for those days, versus using a
standard VWAP curve. For each of the 30 scheduled Fed
days in our sample, we computed the shortfalls obtained
by trading the 1000 largest stocks with those curves. The
standard deviation of the computed shortfalls is shown in
Fig. 9. We show the estimated standard deviation as well
as2σ error bars to indicate the degree of uncertainty in
the estimation, which is particularly bad here because of
the limited sample size.

For each date in the sample, the Fed-specific curve
was fit using allotherFed dates. This prevents in-sample
bias, but it also means that a slightly different curve was
used for each of the dates shown. On the other hand the
fixed curve is the same in all cases, and it was fit without
using any days in the sample.

The error bars are so large that one curve fits within
the other’s error margins. That said, Fed-specific curves
do better on all days in the sample. The improvement is
a few bps, 16% of standard deviation on average.

Figure 10 shows the average Fed-specific pattern
computed from our sample of Fed days. The afternoon
volume hump is clearly visible.

F. Option Expiration Days

The third Friday of each month is the last trading
day before the expiration of equity options. Therefore
we may expect unusual trading activity and perhaps a
special volume pattern. To test this theory, we compared

1excluding 2007.
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Fig. 9. Standard deviation of shortfall for scheduled Fed days, 2004-
09. The vertical bars indicate the2σ confidence interval for each
value. The blue curve was obtained by averaging the pattern for Fed
days only. The red curve comes from using a fixed standard pattern.
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Fig. 10. Average realized volume pattern for scheduled Fed days,
2004-2009. The curve does not exhibit the typical U pattern of normal
days.

the performance of a standard curve and special-purpose
curves for these days.

Specifically, we considered the dates corresponding to
the third Friday of each month between July, 2004 and
April, 20092. For each date, we built a VWAP curve by
averaging volume patterns for allotherdates, to prevent
in-sample bias. Then we computed VWAP shortfalls for
the top 1,000 stocks, using this special-purpose curve as
well as a standard, fixed curve.

2except March 21, 2008, which was a holiday.
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Fig. 11. Standard deviation of VWAP shortfall for option expiration
days. The red points correspond to a fixed curve. The blue points were
obtained with an average pattern for all other option expiration days.
The standard error is 2.5 basis points.
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Fig. 12. Average VWAP curves from option expiration days (in
blue). In red, the fixed curve used in the experiments.

The results are plotted in Fig. 11. The standard error
is 2.5 basis points. It can be seen that the performance
of the standard curve is very close to that of the special-
purpose curves. The overall average standard deviation
is 26 basis points in both cases.

Figure 12 depicts the fixed curve used (in red) and the
various special curves (in blue). Clearly much higher
volume than normal is traded during the first and last
bar. Nevertheless, this systematic difference does not
translate into lower variability.

It can be seen in Fig. 11 that the shortfall standard
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Fig. 13. Standard deviation of VWAP shortfall for triple-witching
days.

deviation spikes every three months, in March, June,
September and December. This is especially obvious
in 2004-06. This phenomenon is known as the “Triple
Witching Day” and refers to those days in which op-
tions, index futures, and options on index futures expire
concurrently. Volume tends to be even higher those days.

Figure 13 shows the shortfall standard deviation for
Triple Witching Days. The special-purpose curves out-
perform the fixed curve systematically by 2-3 basis
points. The overall standard deviations are 29 and 32
basis points, respectively. This improvement is within
one standard error of measurement, so it is deemed
insignificant.

III. B ASKETS

The previous section dealt with single-name trades:
all statistics were computed based on the shortfalls from
trading individual names over a day.

In this section we consider multi-stock baskets. Here
the shortfall for one day is computed as the difference
in the weighted average price for the executed basket
and the weighted average price for the same basket in
the overall market. We expect some correlation, but by
and large baskets should have an averaging effect, so we
expect smaller standard deviations.

However, we can ask the same questions as before.
In particular, is there curve drift? Do we benefit from
updating the VWAP curve frequently? To answer this
question we simulated VWAP shortfalls for two baskets:

• An equal-weighted, single-sided basket with the top
100 stocks by market cap.
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Fig. 14. Time series of shortfalls for two patterns, one rolling and
one fixed, and two baskets.

TABLE IV
STANDARD DEVIATION OF SHORTFALL (IN BASIS POINTS) FOR

TWO BASKETS AND TWO CURVES, AVERAGED OVER FEB-MARCH

2009.

Rolling Curve Fixed Curve
Basket 1 6 ± 4 12± 5
Basket 2 11 ± 6 20± 7

• A real basket traded in the past with particularly
unfavorable realized shortfall.

We simulated two VWAP strategies: a moving-average
curve over the last month, and a fixed curve fitted with
old data.

Figure 14 shows time series for the shortfalls. Since
now we have only one shortfall per day, it is possible to
visualize how the shortfall changes day by day (in the
previous section, we had 100-3000 shortfall values per
day). It is immediately clear that shortfall magnitudes
have increased dramatically since September 2008. It is
also apparent that the day-to-day variations are much
larger than the difference between using one or another
VWAP curve.

Figure 15 depicts the standard deviation of shortfall
computed over a rolling two-month window. It can be
seen that the difference between strategies is negligible
up to September 2008. Then one observes differences:
the moving-average curve outperforms the static curve
for both baskets. The difference is not big, however,
as shown in Table IV. The table shows the estimated
standard deviation plus/minus two standard errors.

IV. SUMMARY AND CONCLUSIONS

In this study we examined the performance of various
static VWAP strategies. The performance of a VWAP
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Fig. 15. Standard deviation of shortfalls for two patterns,one rolling
and one fixed, and two baskets. Generally the volatility of baskets is
lower than that of single stocks.

trade is measured by the shortfall between the executed
average price and the market-wide realized VWAP. We
showed that the average shortfall over many trades is
zero, and the relevant performance metric is the shortfall
dispersion. In this study we measured the dispersion as
the shortfalls’ standard deviation.

We estimated the various algorithms’ performance
by simulation using historical 2008-09 volumes and
prices, and compared VWAP curves constructed using
several combinations of estimation and simulation stock
universes. In particular we examined the following cases:

• Fixed curves versus moving-average curves.
• Curves constructed by stock market cap.
• Curves constructed by stock sector.
• Curves constructed specifically for Fed announce-

ment days.
• Curves constructed specifically for option expiration

days.
We computed shortfalls both for single-stock orders and
for baskets.

In general, customizing curves for shorter time spans
or smaller stock universes introduces a fundamental
trade-off. Curves for specific dates/stocksdecreasedis-
persion because they apply to a more-homogeneous
group. But since less data is available, there is less
opportunity for averaging out any idiosyncratic errors
and this mayincreasedispersion.

From the simulation results we can conclude that
• Updating the curves on a rolling basis provides

a benefit, both for single stocks and baskets.
The rolling curve provides average performance at
worst, and at best it can beat the average curve by
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up to 4 basis points in standard deviation, or about
10%. A window of about 1 month (22 trading days)
should be used for averaging.

• Slicing stocks by market cap provides no benefit
beyond a minimum size necessary to ensure stable
estimation. An estimation universe of 500 or more
stocks provides best performance.

• Slicing stocks by sector provides negligible benefit,
in the order of 1-2 basis points on average, or 5%,
at best. Specific curves may in fact be detrimental
for some sectors.

• Special-purpose curves for Fed dates may reduce
standard deviationby up to 16%, but error bars are
large. If a special curve is used, care must be taken
to include as many Fed dates as possible.

• Special-purpose curves for option expiration days
provide no benefit, for general option expiration
days. For triple-witching days there is a visible but
negligible improvement.
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APPENDIX

Below we give a mathematical argument of why
standard deviation of shortfall is the most relevant metric
to quantify the performance of a VWAP strategy.

First, we note that the performance of a VWAP strat-
egy is relatively independent of market moves. Define by
p̄ the VWAP prevailing in the market during the life of a
particular trade. The shortfall between the executed price
and the market’s VWAP can be approximated using the
following formula,

sf =
10, 000

p̄

N−1∑

i=0

(wi − vi)pi bp, (1)

whereN is the number of time periods,T is the life of
the trade,wi is the fraction of the daily market volume
traded during the period[t0+i T

N
, t0+(i+1) T

N
], vi is the

fraction of the traded shares executed during the period
[t0 + i T

N
, t0 + (i + 1) T

N
], andpi is the prevailing market

price during the period[t0 + i T
N

, t0 + (i + 1) T
N

]. This
formula tells us that if the fraction of the order traded
during a certain period equals the fraction of the total

volume traded during that period, the shortfall is going
to be zeroindependentlyof the price moves. If one knew
ex-ante how the volume pattern is going to look like at
the end of the day, one could achieve a near-zero VWAP
shortfall by trading according to that pattern, regardless
of price volatility. It is the inevitable deviations between
wi andvi that result in the VWAP shortfall.

Second, the average shortfall over a large number of
trades is zero. Assume that one trades all the shares
at the beginning of the trade, i.e.v0 = 1 while v1 =
. . . = vN−1 = 0. In this case, for a sell (buy) trade
the shortfall is3 p̄−p0

p̄
(p0−p̄

p̄
). Note that the buy and sell

shortfalls offset each other. Therefore, if we assume that
the side of our trade is random, the average shortfall is
zero. This argument can be extended to show that the
average shortfall is zero, for any curvev0, v1, . . . vN−1

used for trading.
Although the VWAP shortfall is zero on average,

the dispersion of shortfall values does have an impact
on the profitability of a trading strategy. Consider a
trading strategy that has a theoretical Sharpe ratio of
r if executed precisely at market VWAP. In reality,
some practical VWAP algorithm is used, and a non-
zero shortfall is incurred. Since the average shortfall is
zero, the average return of the strategy remains the same.
But the standard deviation of the shortfall increases the
denominator of the Sharpe ratio. For example, if the
standard deviation of the shortfall is approximately equal
to the volatility of the strategy per bet, the strategy’s
actual Sharpe ratio is going be about 70% ofr. This
example and the fact that no VWAP algorithm can
systematically outperform the market demonstrates that
the trader/algorithm objective should be to minimize the
deviation from the market VWAP independent of their
side. The most convenient measure of dispersion is the
standard deviation of the algorithm’s shortfall.

3We use the sign convention that positive shortfalls are unfavorable.


